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ABSTRACT: Emergency management personnel at all levels can benefit from the use of simulation as a planning or 
exercise support tool, but knowledge of existing resources and the expertise needed to provision a simulation with 
data,  execute it, and interpret and synthesize results are not uniformly available to all. To meet these needs, the DHS 
Science & Technology Directorate is funding the development of a Standard Unified Modeling and Mapping 
Integration Toolkit (SUMMIT). SUMMIT brings distributed simulation codes together with metadata, heuristic 
domain knowledge, a uniform interface, integration capability and automation. The system emphasizes integration of 
existing resources around the central notion of simulation templates, which serve as a conduit through which experts 
can package a category of models together with domain knowledge and best practices for their use. Simulation 
templates provide an abstraction that presents different interfaces to model users and model owners, while hiding the 
details of model assembly and execution. This paper will discuss the initial SUMMIT architecture and demonstrate 
how simulation templates allow for guided discovery, provisioning, combination, assembly and presentation of 
simulations. SUMMIT is platform and runtime agnostic, but this paper will focus on a cascade-model implementation 
in Java.  
 

1. Introduction1 
Emergency response professionals cannot consistently 
identify and use best-in-class modeling and simulation 
tools, and their underlying data and domain expertise, 
across all-hazards planning, training and exercises, and 
operations.  Hundreds of potentially useful models exist 
across academia, commercial industry, national 
laboratories, and government; for example, the National 
Center for the Study of Preparedness and Catastrophic 
Event Response (PACER), a DHS Center of Excellence, 
has recently created a list of more than 110 simulation 
models of relevance to catastrophic event planning and 
response [1].  Making these models available and useful 
to the emergency response community has been 
recognized as a capability gap through the Department of 
                                                             
1 Sandia is a multiprogram laboratory operated by Sandia 
Corporation, a Lockheed Martin Company for the United 
States Department of Energy’s National Nuclear Security 
Administration under contract DE-AC04-94AL85000.  
This work was funded by the Infrastructure & 
Geophysical Division of the Department of Homeland 
Security’s Science & Technology Directorate 
(DHS/S&T/IGD) and managed by the National 
Aeronautics and Space Administration (NASA). 
 

Homeland Security’s (DHS) Integrated Product Team 
(IPT) [2] for Incident Management, which includes the 
Federal Emergency Management Agency (FEMA) and 
the Office of Emergency Communications (OEC) as key 
stakeholders.   
  
The Integrated Modeling, Mapping, and Simulation 
(IMMS) Program is a DHS S&T-funded research 
program to address this gap.  The IMMS program vision 
is to create a capability for linking together modeling and 
simulation tools to enable analysts, emergency planners, 
and incident managers to more effectively, economically, 
and rapidly prepare, analyze, train, and respond to real or 
potential catastrophic events.   
 
To realize this vision, a software architecture called 
SUMMIT – the Standard Unified Modeling and Mapping 
Integration Toolkit – is being iteratively designed and 
prototyped.  Currently, SUMMIT requirements have been 
identified, an initial architecture design has been defined, 
and a prototype reference implementation of key 
SUMMIT services developed.  Subsequent phases of the 
program will refine the architecture specification and 
implementation, and incorporate feedback and lessons 
learned from prototype deployments and pilots.   
 



This paper describes several key aspects of the first 
SUMMIT architecture design along with the SUMMIT 
1.0 reference implementation. 

2. Design Goals 
The SUMMIT system is intended to help emergency 
planning and response users discover and utilize a wide 
range of relevant integrated modeling and simulation 
tools.  
 
Flexibility is the primary design principle for SUMMIT 
since the architecture must be able to accommodate many 
different kinds of modeling and simulation tools, span a 
broad suite of hazard and catastrophic event domains, and 
support multiple modes of use including planning, 
training/exercises, and operations. To this end, the 
SUMMIT architecture focuses on the development of 
design concepts and proof-of-concept implementations 
which leverage existing technologies and standards.  Two 
key design concepts are Resource Discovery and 
Resource Integration. 

2.1. Resource Discovery 
One of the fundamental design assumptions for the 
SUMMIT architecture is that the user may not be aware 
of all of the resources (e.g., simulation models and data) 
that are available in a given domain. Therefore, the first 
operation a SUMMIT user typically performs is 
discovery. After connecting to the SUMMIT system, a 
user is first queried about the specific scenario(s) of 
interest. That query process will elicit scenario attributes 
(e.g., specific hazards or events of interest, geographic 
locations, time scales, and other parameters) and 
information about metrics and desired output results (e.g., 
number of casualties, damage to critical infrastructure). 
Using that information, the SUMMIT system will identify 
general classes of models that could be executed to meet 
those requirements. The user then chooses specific 
models to run, configures and submits the computation, 
and eventually receives annotated results. The results are 
archived for future reference. 
 

2.2. Model Integration 
Our survey of available modeling and simulation tools in 
the IMMS domain showed that many of the tools are 
packaged as complete solutions, not intended for 
integration with other software. Nevertheless, we have 
identified many situations in which loose integration 
between simulations is desirable [3]. Simulation 
integration is a large and difficult problem. The 
Department of Defense’s High-Level Architecture (HLA) 
is a well-known contributor in this space [4]. SUMMIT is 
not intended as an alternative to HLA; it operates at a 
higher level by identifying appropriate resources and 

relying on frameworks like HLA for the actual 
integration. 
 
There are several levels at which resources must be 
integrated. These include low-level communication, 
semantic compatibility, and graphical interface 
aggregation. Each of these areas will require specific 
attention and is discussed separately below. 
 
We take a robust, reality-based approach to low-level data 
exchange which maximally leverages existing integration 
work. Central to our approach is the notion of a federation 
execution architecture (FEA). We partition the set of all 
possible simulations into FEAs which are directly 
integrable based on intent or technology. For example, all 
simulations built using a particular HLA Runtime 
Infrastructure (RTI) would comprise an HLA FEA. 
Within an FEA, many simulations can be directly 
connected, while others can be easily adapted. This use of 
direct connections means that simulations will be 
efficiently usable by the SUMMIT system without special 
considerations by their developers. 
 
Integration between FEAs will require bridging services. 
Bridging services will move data between resources 
belonging to different FEAs. We currently handle this 
directly for the most common case of serial execution by 
defining a set of conventions we call the cascade FEA. 
The cascade FEA uses a file exchange metaphor to 
integrate resources, similar to the concept of “pipes” in 
UNIX. It works well for communication between 
semantically compatible, distinct resources. 
 
We will address semantic compatibility of models by 
storing metadata about all resources and using this 
metadata to generate trivial connectors or translators as 
needed. The metadata description of a resource will refer 
to concepts in the IMMS ontologies, including domain 
concepts like “wind field,” mathematical ideas like units, 
and lower-level information about data representation. 
SUMMIT will understand a rich set of standard interfaces 
and formats which resources may expose; a resource that 
presents a standard software interface will need only 
trivial metadata to describe it. Whenever possible, these 
interfaces and formats will be existing standards rather 
than new inventions. Our emphasis will be on allowing 
existing resources to be used with the system with little to 
no modification. 
 
Graphical interface integration and aggregation has 
traditionally been a difficult problem to tackle without 
placing strong requirements on simulation developers. We 
are exploring several approaches ranging from the use of 
screen-sharing and virtual-worlds technologies, to 
specifying a mechanism for simulation developers to 
directly create graphical plug-ins for the SUMMIT client. 



3. Architectural Overview 
The SUMMIT architecture is designed to allow for 
maximum flexibility, placing few restrictions on federated 
models but still providing necessary capabilities for 
integration.  At the core of the architecture is a metadata 
repository containing information about models and how 
they can be accessed, executed, and interconnected.  A 
client-side component allows for interaction with the user, 
while a set of distributed core services provide the system 
functionality. 
 
The central concept of the SUMMIT architecture is the 
simulation template. A simulation template generically 
represents a class of computations that can be performed 
on behalf of the user that addresses a particular 
hazard/incident scenario. A simulation template is a 
directed graph of slots which itself has its own semantics.  
A slot is a sort of contract; it specifies both the semantics 
of an idealized simulation model and a software interface 
for interacting with that model. The software interfaces 
and graphs are used by the federation runtime builder to 
assemble compound models and to execute models in the 
context of the SUMMIT system. The semantics are also 
used to locate useful models during the discovery process. 
Figure 1 is a UML class diagram showing how templates 
and slots are related. 
 

  
 

Figure 1 –UML Class Diagram for Simulation 
Templates 

 
Figure 2 illustrates a simulation template whose purpose 
is to quantify medical risks to a population subjected to an 
aerosolized chemical agent release.  It consists of 4 slots 
(rounded boxes), data flow connections between slots 
(solid lines), template-level or “free” inputs (dashed 
lines), and template-level outputs.  Simulation templates 
provide an abstract representation of an executable 
simulation.  The abstraction allows users to discover a 
template based on its functional capabilities, and then 

populate the slots with particular models, simulations, and 
data sets.  In the example figure, “Location” is an abstract 
template-level input shared across two slots, and “Air 
Dispersion” is an abstract slot that accepts models which 
may differ in accuracy or execution time.  A fully 
populated and configured simulation template, along with 
its metadata, contains enough information to execute a 
simulation. 
 
 

 
Figure 2 – Example Simulation Template 

 
We therefore see that the discovery process previously 
described should result in a list of applicable simulation 
templates.  In order to run a full simulation, the user 
selects a simulation template from those discovered for 
the desired scenario and analysis objective.  The user then 
chooses specific resources to populate the data and model 
slots.  Differentiating characteristics supplied by the 
resource providers and feedback from previous executions 
help guide resource selection.  The simulation template 
itself contains concrete details for connecting the resource 
slots, including what federation technology should serve 
as the communication and synchronization backbone.  
 
The populated simulation template is ready for execution 
after the data and model slots are chosen and template-
level inputs are specified.  The Federation Runtime 
Builder (FRB) builds an executable Federation Runtime 
(FR) from a populated simulation template. The FR 
manages execution detail -- based on template metadata 
provided by the ontology, the Federation Runtime 
establishes the appropriate infrastructure for 
synchronizing model and data communication, starts the 
appropriate models and establishes data connections, and 
mediates exchange of information between the user and 
simulation federates.   
 
The complete SUMMIT architecture design necessarily 
includes some additional components, especially for 
storing simulation results and communicating them to the 
user; however these components are not the focus of the 
present paper. 

4. Reference Implementation 
The SUMMIT 1.0 Reference Implementation is entirely 
written in the Java programming language [5].  The 
SUMMIT client program is built on the Eclipse 



Framework [6] and includes NASA WorldWind [7] for 
mapping and GIS support. 
 
The server-side component of the SUMMIT reference 
implementation is organized around four separate core 
services, which can be installed together or distributed 
across multiple physical computers. These services are the 
Discovery Engine, the Storage Manager, the Queue 
Manager, and the Federation Runtime Builder. The 
Discovery Service implements the discovery protocol 
discussed in a previous section. The Storage Manager is a 
simple HTTP-based file server, and is used to store both 
executable simulations and computed results. The Queue 
Manager is capable of fetching executable simulations 
from the Storage Manager and running them, storing the 
results and making their location available to the 
SUMMIT client. Finally, the Federation Runtime Builder 
generates Java code capable of instantiating, initializing, 
and executing a configured simulation. Figure 3 shows 
how the core services interact with the client. 
 

 
 
Figure 3 – Sequence diagram showing the interactions 
of the core services in the SUMMIT reference 
implementation. 
 

4.1. Networking 
Ultimately the SUMMIT system is intended for 
deployment on a wide-area network such as the Internet. 
This requirement places some significant restrictions on 
networking mechanisms. SUMMIT can leverage existing 
firewalls, security policies, and other infrastructure by 
operating over an HTTPS-based protocol like Web 
Services, and ultimately that is our intention. Web 
Services can be easily tunneled through firewalls, and 

they can easily make use of PKI-based security. They’re 
widely used and widely understood, making them ideal 
for adoption by a large number of model builders. 
 
In our initial reference implementation, however, we have 
concentrated mainly on the discovery and model 
assembly process, and have used a simpler networking 
technology (Java Remote Method Invocation, or RMI) [8] 
for communicating between the client and the core 
services. In particular, the core services, the desktop 
client, and the execution service can all run on separate, 
independent machines, communicating via RMI. 
Although not supported by the current reference 
implementation, our planned architecture includes 
multiple distributed execution services as well. 
 
Besides RMI, the Storage Manager uses HTTP to serve 
stored files, which is compatible with the overall system 
goals. 
 

4.2. Model Integration 
In general, it is the philosophy of the SUMMIT 
framework to place very few constraints on developers. 
Integrating a model into the framework should be simple 
and quick, and require little learning. Wherever possible, 
the framework should perform all setup, communication, 
and teardown duties, freeing developers from unnecessary 
responsibilities. 
 
The SUMMIT reference implementation does not include 
an explicit API for model wrapping. To integrate a model 
with SUMMIT, a developer needs to write a Java class 
which implements the slot interface for each slot that the 
model might occupy. The interfaces are comprised of 
simple accessor and mutator methods, and the general 
usage paradigm is that the mutators are used to set 
properties used as inputs, and the accessors are used to 
extract results. A single no-argument, void-returning 
method must be provided to execute the model itself, and 
the class must have a public, no-argument constructor. 
Models are allowed to assume that the current working 
directory is available for storing results files. 
 
In addition to the model wrapper itself, a developer must 
provide some metadata to the SUMMIT system, including 
the name of the class, the name of the executor method, 
the location of a jar file containing the wrapper, and 
additional information about any supplementary files or 
libraries needed at runtime. 

4.3. Template Representation 
In the SUMMIT reference implementation, slots are 
represented by Java interfaces, and each model must 
provide a wrapper which implements one or more of these 



slot interfaces. Templates describe how model inputs and 
outputs are interconnected at an abstract level; the 
JavaBeans naming conventions for properties and 
methods [9] are used to translate those descriptions into 
concrete code.  
 
The data types of the model properties must either be 
primitives, or must be chosen from a collection known as 
the DataType Library (DTL).  The DTL includes general 
types representing concepts like time, temperature, 
concentration, and geographic location, as well as more 
specific types representing concepts relevant to 
emergency planning. Each entry in the DTL includes a 
Java class representing the type as well as a graphical 
component that the client can use to create configuration 
GUIs for a model. 

4.4. The Federation Runtime Builder 
Models are assembled into executable programs by the 
Federation Runtime Builder (FRB). The FRB uses the slot 
and template descriptions to guide the generation of code 
which instantiates, configures, connects, and executes all 
the models in a complete simulation. The assembled 
simulation is then packaged as a standalone application 
(albeit one configured to run in a specific environment, 
possibly on a specific machine) which can be archived for 
later use or immediately sent to the execution manager to 
run. 
 
In the SUMMIT system, a Federation Runtime (FR) is an 
executable simulation, including the network of 
assembled models and their input data. The Federation 
Runtime Builder (FRB) is a service that accepts a 
populated simulation template and generates a FR from it. 
We did not want simulation templates to mandate a 
specific architecture or implementation, so that in theory a 
single template could be interpreted in multiple ways 
through the establishment of appropriate sets of local 
conventions. For example, FRs based on direct assembly 
of XML Web Services components, CORBA servants, or 
HLA federates are possible. The reference 
implementation is based on serial execution of models 
conforming to the JavaBeans component architecture, but 
nothing about the SUMMIT system design requires this.  
 
A core requirement for SUMMIT is that models located 
on remote servers could be executed in situ. For purely 
pragmatic reasons this makes a great deal of sense, as 
many models have complex and idiosyncratic installation, 
setup, and maintenance requirements that would make it 
impractical or impossible to install all SUMMIT models 
on a single server or server farm. On the other hand, 
WAN communications between multiple models, 
although sometimes necessary, should be avoided when 
possible in favor of direct connections on a single host. 
Therefore the FRB creates, but does not execute, FRs, 

which can then be sent to a remote server on which a 
model is installed for execution as appropriate. 
 
The task of the FRB is to generate code which instantiates 
all of the model wrappers, sets all the free inputs (model 
inputs which are not connected to the outputs of other 
models) and then executes each model in turn, moving 
data as required from the outputs of one model to the 
inputs of the next, making the final outputs available. 
There are several ways this could be done. First there is 
the nature of the “glue” code itself: models could be 
bound together with generated scripts, or real Java code 
could be generated instead. We chose to use generated 
code, mainly to make debugging easier. Secondly, the 
generated code could use late binding and remain largely 
ignorant of data types, or it could consist of type safe code 
which rigorously checks data types at compile time. 
Again, in support of easier debugging and clearer error 
messages, we chose to use early binding and compile time 
checking. 
 
There remain a few complexities that must be addressed. 
The populated simulation template includes values for the 
free inputs of all the slots. These values include both 
scalar data and instances of compound data types drawn 
from a collection called the Data Type Library (DTL). 
The DTL includes a set of standard types for describing 
time, geographical coordinates, and other useful 
quantities. All of these values must somehow be 
transmitted to the assembled FR, the execution of which 
may occur at any future time, on another computer. We 
chose to accomplish this by using the Java serialization 
APIs to save all the inputs to a file which is then packaged 
inside the FR. Code in the FR loads the contents of this 
file when the model runs and applies the inputs to the 
models by setting the appropriate JavaBeans properties. 
This has several beneficial side effects: besides making 
model execution very simple, it simplifies the process of 
storing simulation runs along with their results. 
 
Sequencing and synchronization of connected models is 
in general a substantial topic. In our serial reference 
implementation, the main issue is that the connected 
graph of the simulation template does not explicitly 
specify the order in which the models the slots should be 
executed. The FRB chooses an order by sorting the slots 
according to their dependencies on outputs from other 
slots. 

5. Future Directions 
Using SUMMIT 1.0, we’ve been able to demonstrate 
working examples of our approach to model discovery, 
integration, and execution. Based on these experiences, 
we have defined some priorities for follow-on work.  



5.1. SUMMIT Software Development Kit (SDK) 
Defining templates, slots, and models in terms of 
metadata is flexible and expressive, but the RDFS data 
format is terse and complex.  Entering metadata to 
represent a new resource can be a complex undertaking. 
We’ll therefore be developing web-based tools for 
creating, modifying, and querying resource metadata. 
These include both developer-facing tools for working 
with individual resources as well as administrator tools 
for managing an entire SUMMIT installation. 

5.2. Networking and Security 
RMI communication is a simple mechanism that’s easy to 
implement and excellent for experimentation, but it works 
only with Java, lacks security and doesn’t scale well. It is 
therefore not suitable for large-scale deployment. 
SUMMIT 2.0 will explore the use of Web Services, based 
on XML and HTTPS, for communications. By 
transitioning our reference implementation to use a Web 
Services model, we will enable the SUMMIT system to 
leverage existing firewalls and Internet security 
infrastructure. Furthermore, the cross-language portability 
of Web Services will allow a diverse ecosystem of 
SUMMIT implementations to interoperate.  

5.3. Concurrent execution and HLA 
The FRB in SUMMIT 1.0 uses a cascade architecture for 
all communications between models: the models are 
executed serially, and outputs from each model are 
injected into subsequent models in the sequence as 
appropriate. The SUMMIT architecture is more general 
than this, however, and nothing about the architecture 
precludes parallel execution of models that communicate 
using an event-based paradigm like the HLA. Future 
versions of SUMMIT will continue to refine the cascade 
federation group, and will also add support for a parallel 
federation group, most likely using the HLA. 

5.4. Advanced visualization and scalable access 
technologies 
Finally, APIs for interfacing commercial and next-
generation visualization technologies to the SUMMIT 
architecture will also be prototyped.  These technologies 
will support the collaborative use of SUMMIT-brokered 
resources by multiple remote users (e.g., through virtual 
worlds) as well as provide new ways of fusing and 
exploring the results generated by federated SUMMIT 
models. 
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