
Simulation Templates in the SUMMIT System

Ernest Friedman-Hill
Todd Plantenga

Heidi Ammerlahn
Sandia National Laboratories

PO Box 969
Livermore, CA 94550

ejfried@sandia.gov, tplant@sandia.gov, hrammer@sandia.gov

Keywords:
Simulation, Integration, Templates, Assembly

ABSTRACT: Emergency management personnel at all levels can benefit from the use of simulation as a planning or
exercise support tool, but knowledge of existing resources and the expertise needed to provision a simulation with
data, execute it, and interpret and synthesize results are not uniformly available to all. To meet these needs, the DHS
Science & Technology Directorate is funding the development of a Standard Unified Modeling and Mapping
Integration Toolkit (SUMMIT). SUMMIT brings distributed simulation codes together with metadata, heuristic
domain knowledge, a uniform interface, integration capability and automation. The system emphasizes integration of
existing resources around the central notion of simulation templates, which serve as a conduit through which experts
can package a category of models together with domain knowledge and best practices for their use. Simulation
templates provide an abstraction that presents different interfaces to model users and model owners, while hiding the
details of model assembly and execution. This paper will discuss the initial SUMMIT architecture and demonstrate
how simulation templates allow for guided discovery, provisioning, combination, assembly and presentation of
simulations. SUMMIT is platform and runtime agnostic, but this paper will focus on a cascade-model implementation
in Java.

1. Introduction1
Emergency response professionals cannot consistently
identify and use best-in-class modeling and simulation
tools, and their underlying data and domain expertise,
across all-hazards planning, training and exercises, and
operations. Hundreds of potentially useful models exist
across academia, commercial industry, national
laboratories, and government; for example, the National
Center for the Study of Preparedness and Catastrophic
Event Response (PACER), a DHS Center of Excellence,
has recently created a list of more than 110 simulation
models of relevance to catastrophic event planning and
response [1]. Making these models available and useful
to the emergency response community has been
recognized as a capability gap through the Department of

1 Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company for the United
States Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.
This work was funded by the Infrastructure &
Geophysical Division of the Department of Homeland
Security’s Science & Technology Directorate
(DHS/S&T/IGD) and managed by the National
Aeronautics and Space Administration (NASA).

Homeland Security’s (DHS) Integrated Product Team
(IPT) [2] for Incident Management, which includes the
Federal Emergency Management Agency (FEMA) and
the Office of Emergency Communications (OEC) as key
stakeholders.

The Integrated Modeling, Mapping, and Simulation
(IMMS) Program is a DHS S&T-funded research
program to address this gap. The IMMS program vision
is to create a capability for linking together modeling and
simulation tools to enable analysts, emergency planners,
and incident managers to more effectively, economically,
and rapidly prepare, analyze, train, and respond to real or
potential catastrophic events.

To realize this vision, a software architecture called
SUMMIT – the Standard Unified Modeling and Mapping
Integration Toolkit – is being iteratively designed and
prototyped. Currently, SUMMIT requirements have been
identified, an initial architecture design has been defined,
and a prototype reference implementation of key
SUMMIT services developed. Subsequent phases of the
program will refine the architecture specification and
implementation, and incorporate feedback and lessons
learned from prototype deployments and pilots.

This paper describes several key aspects of the first
SUMMIT architecture design along with the SUMMIT
1.0 reference implementation.

2. Design Goals
The SUMMIT system is intended to help emergency
planning and response users discover and utilize a wide
range of relevant integrated modeling and simulation
tools.

Flexibility is the primary design principle for SUMMIT
since the architecture must be able to accommodate many
different kinds of modeling and simulation tools, span a
broad suite of hazard and catastrophic event domains, and
support multiple modes of use including planning,
training/exercises, and operations. To this end, the
SUMMIT architecture focuses on the development of
design concepts and proof-of-concept implementations
which leverage existing technologies and standards. Two
key design concepts are Resource Discovery and
Resource Integration.

2.1. Resource Discovery
One of the fundamental design assumptions for the
SUMMIT architecture is that the user may not be aware
of all of the resources (e.g., simulation models and data)
that are available in a given domain. Therefore, the first
operation a SUMMIT user typically performs is
discovery. After connecting to the SUMMIT system, a
user is first queried about the specific scenario(s) of
interest. That query process will elicit scenario attributes
(e.g., specific hazards or events of interest, geographic
locations, time scales, and other parameters) and
information about metrics and desired output results (e.g.,
number of casualties, damage to critical infrastructure).
Using that information, the SUMMIT system will identify
general classes of models that could be executed to meet
those requirements. The user then chooses specific
models to run, configures and submits the computation,
and eventually receives annotated results. The results are
archived for future reference.

2.2. Model Integration
Our survey of available modeling and simulation tools in
the IMMS domain showed that many of the tools are
packaged as complete solutions, not intended for
integration with other software. Nevertheless, we have
identified many situations in which loose integration
between simulations is desirable [3]. Simulation
integration is a large and difficult problem. The
Department of Defense’s High-Level Architecture (HLA)
is a well-known contributor in this space [4]. SUMMIT is
not intended as an alternative to HLA; it operates at a
higher level by identifying appropriate resources and

relying on frameworks like HLA for the actual
integration.

There are several levels at which resources must be
integrated. These include low-level communication,
semantic compatibility, and graphical interface
aggregation. Each of these areas will require specific
attention and is discussed separately below.

We take a robust, reality-based approach to low-level data
exchange which maximally leverages existing integration
work. Central to our approach is the notion of a federation
execution architecture (FEA). We partition the set of all
possible simulations into FEAs which are directly
integrable based on intent or technology. For example, all
simulations built using a particular HLA Runtime
Infrastructure (RTI) would comprise an HLA FEA.
Within an FEA, many simulations can be directly
connected, while others can be easily adapted. This use of
direct connections means that simulations will be
efficiently usable by the SUMMIT system without special
considerations by their developers.

Integration between FEAs will require bridging services.
Bridging services will move data between resources
belonging to different FEAs. We currently handle this
directly for the most common case of serial execution by
defining a set of conventions we call the cascade FEA.
The cascade FEA uses a file exchange metaphor to
integrate resources, similar to the concept of “pipes” in
UNIX. It works well for communication between
semantically compatible, distinct resources.

We will address semantic compatibility of models by
storing metadata about all resources and using this
metadata to generate trivial connectors or translators as
needed. The metadata description of a resource will refer
to concepts in the IMMS ontologies, including domain
concepts like “wind field,” mathematical ideas like units,
and lower-level information about data representation.
SUMMIT will understand a rich set of standard interfaces
and formats which resources may expose; a resource that
presents a standard software interface will need only
trivial metadata to describe it. Whenever possible, these
interfaces and formats will be existing standards rather
than new inventions. Our emphasis will be on allowing
existing resources to be used with the system with little to
no modification.

Graphical interface integration and aggregation has
traditionally been a difficult problem to tackle without
placing strong requirements on simulation developers. We
are exploring several approaches ranging from the use of
screen-sharing and virtual-worlds technologies, to
specifying a mechanism for simulation developers to
directly create graphical plug-ins for the SUMMIT client.

3. Architectural Overview
The SUMMIT architecture is designed to allow for
maximum flexibility, placing few restrictions on federated
models but still providing necessary capabilities for
integration. At the core of the architecture is a metadata
repository containing information about models and how
they can be accessed, executed, and interconnected. A
client-side component allows for interaction with the user,
while a set of distributed core services provide the system
functionality.

The central concept of the SUMMIT architecture is the
simulation template. A simulation template generically
represents a class of computations that can be performed
on behalf of the user that addresses a particular
hazard/incident scenario. A simulation template is a
directed graph of slots which itself has its own semantics.
A slot is a sort of contract; it specifies both the semantics
of an idealized simulation model and a software interface
for interacting with that model. The software interfaces
and graphs are used by the federation runtime builder to
assemble compound models and to execute models in the
context of the SUMMIT system. The semantics are also
used to locate useful models during the discovery process.
Figure 1 is a UML class diagram showing how templates
and slots are related.

Figure 1 –UML Class Diagram for Simulation
Templates

Figure 2 illustrates a simulation template whose purpose
is to quantify medical risks to a population subjected to an
aerosolized chemical agent release. It consists of 4 slots
(rounded boxes), data flow connections between slots
(solid lines), template-level or “free” inputs (dashed
lines), and template-level outputs. Simulation templates
provide an abstract representation of an executable
simulation. The abstraction allows users to discover a
template based on its functional capabilities, and then

populate the slots with particular models, simulations, and
data sets. In the example figure, “Location” is an abstract
template-level input shared across two slots, and “Air
Dispersion” is an abstract slot that accepts models which
may differ in accuracy or execution time. A fully
populated and configured simulation template, along with
its metadata, contains enough information to execute a
simulation.

Figure 2 – Example Simulation Template

We therefore see that the discovery process previously
described should result in a list of applicable simulation
templates. In order to run a full simulation, the user
selects a simulation template from those discovered for
the desired scenario and analysis objective. The user then
chooses specific resources to populate the data and model
slots. Differentiating characteristics supplied by the
resource providers and feedback from previous executions
help guide resource selection. The simulation template
itself contains concrete details for connecting the resource
slots, including what federation technology should serve
as the communication and synchronization backbone.

The populated simulation template is ready for execution
after the data and model slots are chosen and template-
level inputs are specified. The Federation Runtime
Builder (FRB) builds an executable Federation Runtime
(FR) from a populated simulation template. The FR
manages execution detail -- based on template metadata
provided by the ontology, the Federation Runtime
establishes the appropriate infrastructure for
synchronizing model and data communication, starts the
appropriate models and establishes data connections, and
mediates exchange of information between the user and
simulation federates.

The complete SUMMIT architecture design necessarily
includes some additional components, especially for
storing simulation results and communicating them to the
user; however these components are not the focus of the
present paper.

4. Reference Implementation
The SUMMIT 1.0 Reference Implementation is entirely
written in the Java programming language [5]. The
SUMMIT client program is built on the Eclipse

Framework [6] and includes NASA WorldWind [7] for
mapping and GIS support.

The server-side component of the SUMMIT reference
implementation is organized around four separate core
services, which can be installed together or distributed
across multiple physical computers. These services are the
Discovery Engine, the Storage Manager, the Queue
Manager, and the Federation Runtime Builder. The
Discovery Service implements the discovery protocol
discussed in a previous section. The Storage Manager is a
simple HTTP-based file server, and is used to store both
executable simulations and computed results. The Queue
Manager is capable of fetching executable simulations
from the Storage Manager and running them, storing the
results and making their location available to the
SUMMIT client. Finally, the Federation Runtime Builder
generates Java code capable of instantiating, initializing,
and executing a configured simulation. Figure 3 shows
how the core services interact with the client.

Figure 3 – Sequence diagram showing the interactions
of the core services in the SUMMIT reference
implementation.

4.1. Networking
Ultimately the SUMMIT system is intended for
deployment on a wide-area network such as the Internet.
This requirement places some significant restrictions on
networking mechanisms. SUMMIT can leverage existing
firewalls, security policies, and other infrastructure by
operating over an HTTPS-based protocol like Web
Services, and ultimately that is our intention. Web
Services can be easily tunneled through firewalls, and

they can easily make use of PKI-based security. They’re
widely used and widely understood, making them ideal
for adoption by a large number of model builders.

In our initial reference implementation, however, we have
concentrated mainly on the discovery and model
assembly process, and have used a simpler networking
technology (Java Remote Method Invocation, or RMI) [8]
for communicating between the client and the core
services. In particular, the core services, the desktop
client, and the execution service can all run on separate,
independent machines, communicating via RMI.
Although not supported by the current reference
implementation, our planned architecture includes
multiple distributed execution services as well.

Besides RMI, the Storage Manager uses HTTP to serve
stored files, which is compatible with the overall system
goals.

4.2. Model Integration
In general, it is the philosophy of the SUMMIT
framework to place very few constraints on developers.
Integrating a model into the framework should be simple
and quick, and require little learning. Wherever possible,
the framework should perform all setup, communication,
and teardown duties, freeing developers from unnecessary
responsibilities.

The SUMMIT reference implementation does not include
an explicit API for model wrapping. To integrate a model
with SUMMIT, a developer needs to write a Java class
which implements the slot interface for each slot that the
model might occupy. The interfaces are comprised of
simple accessor and mutator methods, and the general
usage paradigm is that the mutators are used to set
properties used as inputs, and the accessors are used to
extract results. A single no-argument, void-returning
method must be provided to execute the model itself, and
the class must have a public, no-argument constructor.
Models are allowed to assume that the current working
directory is available for storing results files.

In addition to the model wrapper itself, a developer must
provide some metadata to the SUMMIT system, including
the name of the class, the name of the executor method,
the location of a jar file containing the wrapper, and
additional information about any supplementary files or
libraries needed at runtime.

4.3. Template Representation
In the SUMMIT reference implementation, slots are
represented by Java interfaces, and each model must
provide a wrapper which implements one or more of these

slot interfaces. Templates describe how model inputs and
outputs are interconnected at an abstract level; the
JavaBeans naming conventions for properties and
methods [9] are used to translate those descriptions into
concrete code.

The data types of the model properties must either be
primitives, or must be chosen from a collection known as
the DataType Library (DTL). The DTL includes general
types representing concepts like time, temperature,
concentration, and geographic location, as well as more
specific types representing concepts relevant to
emergency planning. Each entry in the DTL includes a
Java class representing the type as well as a graphical
component that the client can use to create configuration
GUIs for a model.

4.4. The Federation Runtime Builder
Models are assembled into executable programs by the
Federation Runtime Builder (FRB). The FRB uses the slot
and template descriptions to guide the generation of code
which instantiates, configures, connects, and executes all
the models in a complete simulation. The assembled
simulation is then packaged as a standalone application
(albeit one configured to run in a specific environment,
possibly on a specific machine) which can be archived for
later use or immediately sent to the execution manager to
run.

In the SUMMIT system, a Federation Runtime (FR) is an
executable simulation, including the network of
assembled models and their input data. The Federation
Runtime Builder (FRB) is a service that accepts a
populated simulation template and generates a FR from it.
We did not want simulation templates to mandate a
specific architecture or implementation, so that in theory a
single template could be interpreted in multiple ways
through the establishment of appropriate sets of local
conventions. For example, FRs based on direct assembly
of XML Web Services components, CORBA servants, or
HLA federates are possible. The reference
implementation is based on serial execution of models
conforming to the JavaBeans component architecture, but
nothing about the SUMMIT system design requires this.

A core requirement for SUMMIT is that models located
on remote servers could be executed in situ. For purely
pragmatic reasons this makes a great deal of sense, as
many models have complex and idiosyncratic installation,
setup, and maintenance requirements that would make it
impractical or impossible to install all SUMMIT models
on a single server or server farm. On the other hand,
WAN communications between multiple models,
although sometimes necessary, should be avoided when
possible in favor of direct connections on a single host.
Therefore the FRB creates, but does not execute, FRs,

which can then be sent to a remote server on which a
model is installed for execution as appropriate.

The task of the FRB is to generate code which instantiates
all of the model wrappers, sets all the free inputs (model
inputs which are not connected to the outputs of other
models) and then executes each model in turn, moving
data as required from the outputs of one model to the
inputs of the next, making the final outputs available.
There are several ways this could be done. First there is
the nature of the “glue” code itself: models could be
bound together with generated scripts, or real Java code
could be generated instead. We chose to use generated
code, mainly to make debugging easier. Secondly, the
generated code could use late binding and remain largely
ignorant of data types, or it could consist of type safe code
which rigorously checks data types at compile time.
Again, in support of easier debugging and clearer error
messages, we chose to use early binding and compile time
checking.

There remain a few complexities that must be addressed.
The populated simulation template includes values for the
free inputs of all the slots. These values include both
scalar data and instances of compound data types drawn
from a collection called the Data Type Library (DTL).
The DTL includes a set of standard types for describing
time, geographical coordinates, and other useful
quantities. All of these values must somehow be
transmitted to the assembled FR, the execution of which
may occur at any future time, on another computer. We
chose to accomplish this by using the Java serialization
APIs to save all the inputs to a file which is then packaged
inside the FR. Code in the FR loads the contents of this
file when the model runs and applies the inputs to the
models by setting the appropriate JavaBeans properties.
This has several beneficial side effects: besides making
model execution very simple, it simplifies the process of
storing simulation runs along with their results.

Sequencing and synchronization of connected models is
in general a substantial topic. In our serial reference
implementation, the main issue is that the connected
graph of the simulation template does not explicitly
specify the order in which the models the slots should be
executed. The FRB chooses an order by sorting the slots
according to their dependencies on outputs from other
slots.

5. Future Directions
Using SUMMIT 1.0, we’ve been able to demonstrate
working examples of our approach to model discovery,
integration, and execution. Based on these experiences,
we have defined some priorities for follow-on work.

5.1. SUMMIT Software Development Kit (SDK)
Defining templates, slots, and models in terms of
metadata is flexible and expressive, but the RDFS data
format is terse and complex. Entering metadata to
represent a new resource can be a complex undertaking.
We’ll therefore be developing web-based tools for
creating, modifying, and querying resource metadata.
These include both developer-facing tools for working
with individual resources as well as administrator tools
for managing an entire SUMMIT installation.

5.2. Networking and Security
RMI communication is a simple mechanism that’s easy to
implement and excellent for experimentation, but it works
only with Java, lacks security and doesn’t scale well. It is
therefore not suitable for large-scale deployment.
SUMMIT 2.0 will explore the use of Web Services, based
on XML and HTTPS, for communications. By
transitioning our reference implementation to use a Web
Services model, we will enable the SUMMIT system to
leverage existing firewalls and Internet security
infrastructure. Furthermore, the cross-language portability
of Web Services will allow a diverse ecosystem of
SUMMIT implementations to interoperate.

5.3. Concurrent execution and HLA
The FRB in SUMMIT 1.0 uses a cascade architecture for
all communications between models: the models are
executed serially, and outputs from each model are
injected into subsequent models in the sequence as
appropriate. The SUMMIT architecture is more general
than this, however, and nothing about the architecture
precludes parallel execution of models that communicate
using an event-based paradigm like the HLA. Future
versions of SUMMIT will continue to refine the cascade
federation group, and will also add support for a parallel
federation group, most likely using the HLA.

5.4. Advanced visualization and scalable access
technologies
Finally, APIs for interfacing commercial and next-
generation visualization technologies to the SUMMIT
architecture will also be prototyped. These technologies
will support the collaborative use of SUMMIT-brokered
resources by multiple remote users (e.g., through virtual
worlds) as well as provide new ways of fusing and
exploring the results generated by federated SUMMIT
models.

6. References
[1] J. E. Coolahan, “Planning for an Integrated M&S

Framework for Catastrophic Event Response”, in
Proceedings 2007 Spring Simulation Interoperability

Workshop, Norfolk, VA, Apr 2007. Also see
http://pacer-ms-catalog.jhuapl.edu.

[2] S. Jain and C.R. McLean, “An Integrating
Framework for Modeling and Simulation for Incident
Management”, Journal of Homeland Security and
Emergency Management, 2006, Vol 3.

[3] J. E. Coolahan, M.T. Kane, et. al., “Design of an
Urban Chemical Disaster Simulation Federation for
Preparedness and Response”, Proceedings of 2007
Fall Simulation Interoperability Workshop, Orlando
FL, Sep 2007.

[4] F. Kuhl, R. Weatherly and J. Dahman, “Creating
Computer Simulation Systems: An Introduction to
the High Level Architecture,” Prentice-Hall, Upper
Saddle River, 1999.

[5] See http://java.sun.com.
[6] See http://www.eclipse.org.
[7] See http://worldwind.arc.nasa.gov /java.
[8] See http://java.sun.com/javase

/technologies/core/basic/rmi.
[9] See http://java.sun.com/javase/ technologies

/desktop/javabeans.

Author Biographies
ERNEST FRIEDMAN-HILL is a principal member of
the technical staff at Sandia National Laboratories. He is
the creator of the Jess rule engine and author of Jess in
Action from Manning Publications. His research interests
include machine intelligence, distributed computing, and
simulation.

TODD PLANTENGA is a principal member of the
technical staff at Sandia National Laboratories. He has
contributed to and led a number of software projects in
both research and commercial arenas. He holds a Ph.D.
with focus on large-scale scientific computing algorithms.

HEIDI AMMERLAHN is the manager of the
Informatics & Decision Sciences department at Sandia
National Laboratories. Her research interests include the
development and application of simulation tools and
advanced information systems to enable better
catastrophic event preparedness and response.

