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ABSTRACT 

 
Emergency management personnel at federal, state, and local levels can benefit from the increased use of simulation 

and modeling for emergency preparedness, including planning, exercises and training. The Department of Homeland 

Security (DHS) is chartered to identify and address modeling opportunities for national preparedness.  Dozens of 

modeling efforts relevant for emergency response have been identified, but knowledge of existing resources and the 

expertise needed to provision a simulation with data, execute it, and synthesize results are not uniformly available to 

all. To meet these needs, the DHS Science and Technology Directorate has spearheaded the Integrated Modeling, 

Mapping, and Simulation (IMMS) program to create a framework that brings relevant tools to the emergency 

response community. 

 

IMMS defines a software framework that brings together distributed codes using metadata, heuristic domain 

knowledge and a uniform interface, to provide integration capability and automated execution. A fundamental goal is 

to connect users such as training and exercise planners with modeling resources. A fundamental challenge is to 

bridge the gap in expertise and technical skills between these two communities, a gap which hinders model 

discovery, provisioning, execution, and interpretation.  

 

We present a platform-neutral, distributed computing framework that connects users (logged in as clients) with 

models (located on servers). Similar frameworks have been proposed or prototyped, including FAIT for a small set 

of infrastructure models, iCAV and Palanterra for GIS modeling, and DIAS for discrete event simulations. IMMS 

contributes two distinct innovations that bring together users and model providers: a discovery process based on web 

ontology taxonomy trees, and an abstraction for modeling emergency planning scenarios. The discovery process 

allows subject matter experts to contribute metadata, while enabling less sophisticated users to find relevant models. 

The abstraction uses "simulation templates" to group models according to function, and then combine functionalities 

to address hazard and threat scenarios.  

 

The paper will describe the framework architecture, the innovative discovery and simulation template components, 

and an initial reference implementation to be used in FEMA National Level Exercises (NLE 2010 and NLE 2011). 
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INTRODUCTION 

 

Emergency management personnel at federal, state, and 

local levels can benefit from the increased use of 

simulation and modeling for emergency preparedness, 

including planning, exercises and training. The 

Department of Homeland Security Science and 

Technology Directorate (DHS/S&T) has identified 

dozens of potentially useful models across academia, 

commercial industry, national laboratories, and 

government.  For example, the National Center for the 

Study of Preparedness and Catastrophic Event 

Response (PACER), a DHS Center of Excellence, 

compiled a list of more than 110 simulation models of 

relevance to catastrophic event planning and response 

(Coolahan, 2007).  DHS/S&T has brought together key 

stakeholders such as the Federal Emergency 

Management Agency (FEMA) and the Office of 

Emergency Communications to develop requirements 

for making models available and useful to the 

emergency response community (DHSST, 2008).  

Access to and economical use of modeling and 

simulation tools were recognized as a significant 

capability gap at national, state, and local levels. 

 

DHS/S&T is addressing this gap by funding the 

Integrated Modeling, Mapping, and Simulation 

(IMMS) program.  IMMS is architecting a framework 

that will enable analysts, emergency planners, and 

incident managers to more effectively prepare for, 

analyze, and respond to real or potential catastrophic 

events.  The program vision is to create a capability for 

linking together modeling and simulation tools for 

easier use. 

 

To realize this vision, a software architecture called 

SUMMIT – the Standard Unified Modeling and 

Mapping Integration Toolkit – is being iteratively 

designed and prototyped.  SUMMIT provides a 

platform-neutral framework that brings together 

distributed modeling codes and a wide range of users. 

The framework makes it easier to find and integrate 

models, provision them for a specific scenario, execute 

models on available resources, and deliver results to a 

collaborating set of users. 

 

This paper briefly describes the architectural design of 

SUMMIT, and then highlights two innovative features:  

an abstraction that we call simulation templates which 

organizes models according to planning needs, and a 

discovery process that allows novice and experienced 

users to find the most appropriate modeling tools. 

 

Contributions of the Paper 

 

Software integration frameworks for modeling and 

simulation are not a new idea (Jain, 2006) (Pederson, 

2006).  McLean and Jain recognized the need for a 

framework and proposed a classification scheme to 

enable model integration for emergency response 

training (McClean, 2007).  The Dynamic Information 

Architecture System (DIAS) provides an object 

oriented software framework for integrating discrete 

event simulation models (Simunich, 2005).  The US 

Army Corps of Engineers “Fort Future” project brings 

together systems of models to validate proposed 

infrastructure installations (Case, 2008).  The Fast 

Analysis Infrastructure Tool (FAIT) integrates a small 

set of infrastructure models for rapid scenario analysis 

(FAIT, 2010).  Geospatial Information System (GIS) 

visualization tools provide a loose sort of integration 

for models that operate on geospatial data; for example, 

the Department of Defense Palanterra (Beaulieu, 

2004) and DHS iCAV (iCAV, 2010) tools.  The 

Department of Defense’s High-Level Architecture 

(HLA) is a well-known contributor in this space (Kuhl, 

1999).  We note that SUMMIT is not intended as an 

alternative to HLA; it operates at a higher level by 

identifying appropriate resources and relying on 

execution frameworks like HLA for code-level 

integration. 
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The contribution of SUMMIT is a framework whose 

prime goal is to bring together users and modeling tools 

from traditionally separate communities.  The 

contribution of this paper is to discuss two innovations 

that further this goal. 

  

 

ARCHITECTURE OVERVIEW 

 

The SUMMIT architecture is designed to allow for 

maximum flexibility, placing few restrictions on 

federated models but still providing necessary 

capabilities for integration.  Model owners decide who 

has permission to use their code, and where the 

executing code is hosted.  Emergency planners and 

other users link models as needed to address specific 

emergency scenarios.  As an example, suppose the 

emergency incident is release of chlorine gas from a 

railcar in an urban setting, and the emergency planner 

wants to know if there are sufficient medical supplies 

for first response.  This scenario might incorporate a 

finite element model that computes the chemical gas 

dispersion plume given current weather conditions, 

another model that quantifies casualties in the 

population at risk, and a third model that tallies 

available medical resources.  SUMMIT makes it 

possible for the planner to link these three models, 

execute them, and view results, all from a single client 

interface. 

 

Software components are divided between a central 

server, user clients, and executable models that are 

usually hosted on the machines of model owners.  

Figure 1 shows the main components of SUMMIT. The 

“data” and “model” symbols in the figure are 

components owned by model contributors.  All other 

symbols are part of the SUMMIT framework.  A 

SUMMIT Client component allows for interaction with 

the user, and a SUMMIT Software Development Kit 

(SDK) provides tools for model owners that ease the 

process of model integration.  Components in the 

SUMMIT server provide system functionality through a 

set of distributed core services. 

 

 
 

Figure 1.  SUMMIT Architecture 
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SUMMIT provides for three types of users:  model 

owners, scenario planners, and emergency responders 

who are the primary end user.  Model owners use 

SUMMIT SDK tools to create a software wrapper that 

enables execution as part of a SUMMIT-mediated 

federation of models.  (Note that in this paper the term 

“federation of models” does not refer to an HLA type 

of federation, and the Federation Runtime Builder in 

Figure 1 is not related to HLA Runtime Infrastructure.  

A SUMMIT federation assumes each model executes in 

isolation, given a correct set of inputs, and executes 

only once during a scenario simulation.  Future 

versions of SUMMIT will relax this requirement, 

allowing dynamic interaction between models, 

including models that run in an HLA RTI.)  For 

example, the three models in the chlorine gas scenario 

described earlier might be contributed by three 

different model owners and hosted at three different 

remote sites.  Scenario planners use SUMMIT SDK 

tools to create simulation templates that bring together 

models for a specific incident scenario.  In the chlorine 

gas example a scenario planner created the simulation 

template by linking three models at a conceptual level.  

These two user groups work offline to add content into 

the SUMMIT framework.  The final end users access 

content through a SUMMIT Client.  They log into the 

system, discover an appropriate simulation template, 

configure inputs, and then view results after SUMMIT 

automatically executes the models that compose the 

simulation template. 

 

Further details on the coordination and execution of 

models in the SUMMIT framework are discussed in 

(Friedman-Hill, 2010).  This paper now turns its 

attention to simulation templates and how they are 

discovered by end users. 

 

 

SIMULATION TEMPLATE ABSTRACTION 

 

The simulation template concept is fundamental to the 

SUMMIT architecture.  Simulation templates provide 

an abstract representation of a hazard or incident 

defined by a scenario planner.  A template also defines 

the components and parameters needed to form an 

executable simulation, which typically comprises 

multiple models.  Figure 2 shows a simulation template 

whose purpose is to quantify medical risks to a 

population subjected to an aerosolized chemical agent 

release.  The specific example of chlorine gas release 

discussed earlier fits into this abstraction.  The template 

consists of 3 slots (rectangles), data flow connections 

between slots (thin arrows), template-level inputs (thick 

arrows pointing in), and template-level outputs (thick 

arrows pointing out).  The end user supplies template-

level inputs and views template-level outputs. 

 

 
 

Figure 2.  Example Simulation Template 

 

Each slot in a template is an abstract functional 

description filled by an actual model or simulation tool.  

To be a candidate for a slot, a model must perform the 

function, accept all inputs, and produce all outputs.  For 

example, in Figure 2 the Air Dispersion slot can accept 

any model that produces a “plume” output (geospatial 

contours of chemical agent at a fixed concentration) in 

response to the four inputs: wind field, chemical agent 

type, release location, and release amount. 

 

The simulation template and slot abstractions promote 

reuse of models.  For instance, the Population Data 

slot outputs a table of numbers describing inhabitants in 

a particular urban region at a particular time.  The same 

slot can easily be used in simulation templates that 

assess populations at risk from other hazards 

(biological weapons, flood, etc.). 

 

Slots are an abstraction for models to support the idea 

of alternate models with similar functionality.  The Air 

Dispersion slot might be filled by one of several 

candidate models (EPA, 2010 provides one list), 

perhaps differentiated by their resolution, or special 

features like wind tunnel effect in downtown cities.  

Any model wrapped to fit the slot specifications is 

capable of executing as part of the simulation template.  

The end user decides on a specific model for each slot 

after choosing a simulation template. 

 

Software Integration of Models 

 

Simulation templates greatly simplify the process of 

provisioning and executing models from the viewpoint 

of a scenario planner or end user.  To achieve this, the 

SUMMIT framework precisely defines interfaces for 

each slot, and an execution scheme for each template.  

Together, these enable automatic execution of a 

simulation once inputs are provided by a user. 

 

The execution scheme is generated automatically from 

the connection topology of slots within a simulation 
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template.  SUMMIT currently assumes that any model 

in a slot can be executed independently.  SUMMIT 

supplies inputs, invokes the model based on stored 

instructions from the model owner, and collects outputs 

of interest.  The SUMMIT Federation Runtime Builder 

determines an order of execution based on the layout of 

slots in a template, and then directs a cascade of 

executables, linking outputs to inputs until all models 

have run.  The independence of models implies they 

can be run on remotely hosted machines; thus, model 

owners can host their resource and SUMMIT acts more 

as a broker that coordinates multiple models. 

 

Inputs and outputs of a slot define a software interface 

for candidate models.  Combined with execution 

instructions, these define an application programming 

interface (API) for each slot.  When a model is 

wrapped to implement the API, it becomes a SUMMIT-

compliant model that can be invoked by the Federation 

Runtime Builder.  The API for a slot is generated by 

SUMMIT SDK tools in the Java programming 

language as a Java interface class.  Java is chosen 

because it is platform-neutral, supports a broad range of 

communication services, and is extremely flexible for 

wrapping codes (in any programming language).  A 

model is wrapped for a slot by implementing the 

methods in the Java API.  The model is declared 

SUMMIT-compliant when it executes successfully 

from a test template supplied by the SDK tool. 

 

SUMMIT DataTypes 

 

Input and output definitions in a software interface are 

nontrivial.  Figure 2 shows the end user view, which 

has simple descriptions like “Location” and “Plume”, 

but the Java API hidden from end users is much more 

detailed.  SUMMIT employs Google Protocol Buffers 

(Google, 2010) to define data containers, and then 

generates Java classes with Protocol Buffer tools.  For 

instance, “Location” is defined as container with 

latitude and longitude, each a double precision number 

containing decimal degrees, the first ranging between -

90 and +90, the second between -180 and +180. 

 

DataType definitions are stored in a SUMMIT 

metadata repository and can be reused freely in any 

number of simulation templates.  Each time a DataType 

appears in a template, its visible display name can be 

customized.  For example, the “Location” DataType in 

Figure 2 that designates the point of chemical release 

might appear in a different template with the name 

“Hospital Location”. 

 

Metadata definitions for data containers have been 

considered elsewhere, most notably the National 

Information Exchange Model (NIEM), a 

comprehensive effort led by the U.S. Department of 

Homeland Security and U.S. Department of Justice 

(NIEM, 2010).  The XML schemas of NIEM provide a 

good reference point for an initial set of DataTypes in 

SUMMIT.  For example, TwoDimensionalGeographic-

CoordinateType and ThreeDimensionalGeographic-

CoordinateType provide basic definitions for a 

“Location” DataType.  However, NIEM XML is not 

used as the data content in SUMMIT because the 

schemas are not designed for modeling and simulation 

tools.  Definitions sometimes have too much formal 

abstraction, and many topics in emergency management 

are not covered at all.  Instead, SUMMIT uses the 

NIEM schemas as guidance for specifying the content 

of Google Protocol Buffers. 

 

One of the goals of SUMMIT is to bring together 

existing models from a variety of sources.  It is unlikely 

that models will follow a common set of DataTypes, 

and inefficient to insist that models be rewritten to 

accommodate a different API.  Instead, SUMMIT 

supports the idea of Adapters to make simple data 

translations at the level of the wrapped model.  For 

example, if a model takes “Location” latitude in 

degree-minute-second format instead of decimal 

degree, then an Adapter inside the Java implementation 

class makes the translation, while the slot API still uses 

the “Location” DataType with decimal degree contents. 

 

For more complex data format differences, SUMMIT 

allows alternate DataTypes to appear on the link 

between slots.  For instance, “Plume” contour data can 

be stored in SHP format or KML format (these are 

alternate GIS formats that cannot always be 

transformed into one another).  SUMMIT might define 

“Plume-SHP” and “Plume-KML” DataTypes instead of 

the single “Plume”.  The Air Dispersion slot could then 

have a single output labeled “Plume-SHP | Plume-

KML”, meaning that either DataType is allowed.  In 

this case, a model is compatible with the slot if it uses 

one or both output DataTypes.  The process of 

selecting models to populate a simulation template 

becomes a little more complicated, because a 

compatible DataType must exist between two 

populated slots. 

 

 

DISCOVERY PROCESS 

 

The SUMMIT system will serve end users with 

different goals (planning, training, operations), from 

different perspectives (federal, regional, local), with 

different levels of experience.  A mature SUMMIT 

system may broker hundreds of modeling and 
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simulation tools with a broad range of capabilities.  A 

basic problem is to connect users with relevant models.  

The previous sections described how emergency 

response scenarios are captured in simulation 

templates, and how models are abstracted by functional 

capability into template slots.  This simplifies the end 

user process of discovery by dividing it into a sequence 

of decisions:   (1) find a simulation template that 

matches the scenario of interest, (2) configure each slot 

in the template with a compatible model, and (3) 

provide specific inputs for execution of the template.  

Step (1) is called discovery and is the subject of this 

section. 

 

SUMMIT will contain simulation templates that span a 

broad range of hazards (chemical, biological, nuclear, 

natural disaster, cyber incident, etc.) and outcomes of 

interest (casualties, economic impact, infrastructure 

damage, etc.).  Users will have different interests and 

areas of expertise, and all aspects of the framework 

(templates and users) can be expected to evolve over 

time.  To address this situation, SUMMIT uses 

“semantic ontology” technology to power a discovery 

process that presents the user with a series of 

“intelligent” queries.  Semantic ontology has many 

interpretations in the computer science community.  

SUMMIT uses taxonomy trees captured with RDFS+ 

(Allemang, 2008). 

 

A taxonomy tree defines a hierarchical organization of 

objects in the shape of an inverted tree, with a general 

“root” object at the top and more specific “branch” or 

“leaf” nodes beneath.  A simple example is a family 

tree with a parent as the root and child branches.  An 

example in SUMMIT is the organization of hazards 

into a tree; for instance, in Figure 3 a path is traced 

from Hazard Incident (the root node) through 

Chemical Incident, CDC Taxonomy, Chemical 

Pulmonary Agent, and Chlorine (a leaf node). 

 

 
 

Figure 3.  Example Taxonomy Tree 
 

The user traverses a taxonomy tree in the discovery 

process to provide the right level of specificity.    A tree 

is always most general at its root, and more specific at a 

leaf.  For example, if the user is interested in any 

Chemical Pulmonary Agent, then the search stops at 

this level.  Traversing further down a tree creates a 

more specific request. 

 

The discovery process uses the taxonomy tree level as 

one of the search criteria for related simulation 

templates.  When a user chooses a certain node in a 

tree, it indicates interest in templates matching the node 

or its children, and indicates that “sibling” items should 

be ruled out.  In the example above, both Chlorine 

(shown) and Phosgene (not shown) are at the level 

below Chemical Pulmonary Agent.  If the user chooses 

Chemical Pulmonary Agent, then simulation templates 

tagged for pulmonary agents, Chlorine, or Phosgene 

are matched.  However, if Chlorine is chosen then 

simulation templates tagged for Chlorine are matched, 

but templates specific to Phosgene are not. 

The Discovery process uses a collection of taxonomy 

trees organized into “phases”.  The first phase is 

Hazard Incident.  The choice of hazards suggests other 

relevant questions to ask under subsequent phases such 

as the Hazard Actions phase.  The suggestions are 

logical links, shown with arrows in Figure 4.  The user 

is thus presented with a set of trees and chooses nodes 

of interest from each one.  The Discovery Engine in the 

SUMMIT architecture (Figure 1) examines these 

choices and decides whether to continue with additional 

phases or to stop and return matching simulation 

templates. 

 
 

Figure 4.  Linked Taxonomy Trees 

 

All nodes chosen by the user contribute as search 

criteria for finding a simulation template.  The 

SUMMIT discovery process also allows users to 

exclude a node.  For example, Figure 5 shows a user 

choosing “Exclude” for the Commercially Transported 

tree, which means any simulation template containing a 

slot that models commercial transportation is ruled out.  

The figure also shows the user stating “No preference” 

for the tree Uses First Responders.  This means the 
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discovery process will not inquire further about first 

responders or use this as part of the search criteria for 

simulation templates. 

 

 
 

Figure 5.  Tree Preferences 

 
The basic taxonomy tree idea is extended in SUMMIT 

to allow alternate views of the same tree.  For example, 

Chemical Incident is a subtree that holds many specific 

chemical hazards:  Chlorine, Phosgene, etc.  The 

Center for Disease Control (CDC, 2010) provides a 

taxonomy that organizes chemicals according to their 

effects on the human body:  Pulmonary Agent, Blister 

Agent, etc.  The Geospatial Data Model (GDM, 2010) 

organizes the same chemicals by their physical 

properties.  The IMMS project consulted with a 

chemical hazard subject matter expert who proposed an 

organization based on the types of models required:  

Dispersed By Air, Spread By Contact, etc.  SUMMIT 

allows all three trees to exist at the same time.  The user 

sees the three Chemical Incident groupings as shown in 

Figure 6, chooses the one they understand best, and 

follows that organizational tree in specifying the hazard 

of interest.  In this way the discovery process 

accommodates multiple points of view. 

 

 
 

Figure 6.  Alternate Taxonomy Groupings 

 

Summarizing, there are three main advantages with 

using a taxonomy tree ontology: (1) users are presented 

with a uniform interface, a series of taxonomy trees, 

that is easier to grasp than an unstructured set of 

questions, but still allows flexibility in the discovery 

process; (2) subject areas are encapsulated, because 

subject matter experts can define their knowledge in a 

tree with minimal dependence on other parts of the 

discovery knowledge base; (3) subject matter is 

logically arranged from simple, general descriptions 

down to detailed, specific leaf nodes. 

 

Software Implementation 

 

Taxonomy trees in SUMMIT are expressed as RDFS+ 

triples (Allemang, 2008).  More powerful set restriction 

concepts modeled in OWL are not needed.  The full set 

of trees is created and managed using the open source 

Protégé tool (Protégé, 2010).  A collection of triples 

holds the SUMMIT ontology, but an inference engine 

is required to reason from this knowledge in response 

to user requests.  SUMMIT uses Jess, an established 

product in the rules engine community licensed by 

Sandia National Laboratories (Friedman-Hill, 2003).  

Jess provides inferencing capability and has a powerful 

Java API that makes it easy to embed in Java 

applications. 

 

Jess inferencing rules examine user choices from 

taxonomy trees and deduce the next set of relevant 

taxonomy trees.  This is based on logical links as in 

Figure 4, and the location of those links with respect to 

the selected tree node. 

 

When discovery is completed, Jess implements logic to 

return simulation templates that match user choices.  

Every slot in a simulation template is tagged with 

classes of the ontology.  For example, the Air 

Dispersion slot of Figure 2 is tagged with Disperses In 

Air (there can be more than one tag per slot).  If the 

user chooses Disperses in Air during the Hazards 

Action phase, then any simulation template containing 

an Air Dispersion slot is considered a match and 

“scores” one point.  Each simulation template has a 

total possible score equal to the number of distinct tags 

on its constituent slots.  Currently, the Discovery 

Engine returns all simulation templates with at least one 

match, ranked by the proportion of total possible 

matches that were realized. 

 

 

SUMMARY 

 

In this paper we provided an overview of the SUMMIT 

framework for integrating modeling and simulation 

tools for emergency response.  We focused on two 

important features in SUMMIT: simulation templates, 

an abstraction for organizing models in terms of their 

relevance to emergency response scenarios, and the 

discovery process, which provides a broad range of end 

users with the capability to find relevant simulation 

templates. 
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The SUMMIT reference implementation is currently 

under development at Sandia National Laboratories as 

part of the IMMS program.  A preliminary version of 

SUMMIT was deployed to support exercise planning in 

the FEMA National Level Exercise 2010, conducted 

May 17-18 in Washington, D.C.  Threat, casualty, 

infrastructure, and medical surge models were 

integrated into SUMMIT to estimate health care 

resource requirements for the exercise ground truth.  

The models were contributed by different agencies, 

linked with special DataTypes, and executed on 

demand.  SUMMIT has been designated as the 

integrating architecture for modeling and simulation at 

the FEMA National Level Exercise in 2011. 

 

The SUMMIT framework and project information is 

hosted at http://dhs-summit.com. 
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