

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10226 Page 1 of 8

Integrated Modeling, Mapping, and Simulation (IMMS) Framework for

Planning Exercises

Todd Plantenga, Ernest Friedman-Hill

Sandia National Laboratories

PO Box 969, Livermore, CA 94550

tplante@sandia.gov, ejfried@sandia.gov

ABSTRACT

Emergency management personnel at federal, state, and local levels can benefit from the increased use of simulation

and modeling for emergency preparedness, including planning, exercises and training. The Department of Homeland

Security (DHS) is chartered to identify and address modeling opportunities for national preparedness. Dozens of

modeling efforts relevant for emergency response have been identified, but knowledge of existing resources and the

expertise needed to provision a simulation with data, execute it, and synthesize results are not uniformly available to

all. To meet these needs, the DHS Science and Technology Directorate has spearheaded the Integrated Modeling,

Mapping, and Simulation (IMMS) program to create a framework that brings relevant tools to the emergency

response community.

IMMS defines a software framework that brings together distributed codes using metadata, heuristic domain

knowledge and a uniform interface, to provide integration capability and automated execution. A fundamental goal is

to connect users such as training and exercise planners with modeling resources. A fundamental challenge is to

bridge the gap in expertise and technical skills between these two communities, a gap which hinders model

discovery, provisioning, execution, and interpretation.

We present a platform-neutral, distributed computing framework that connects users (logged in as clients) with

models (located on servers). Similar frameworks have been proposed or prototyped, including FAIT for a small set

of infrastructure models, iCAV and Palanterra for GIS modeling, and DIAS for discrete event simulations. IMMS

contributes two distinct innovations that bring together users and model providers: a discovery process based on web

ontology taxonomy trees, and an abstraction for modeling emergency planning scenarios. The discovery process

allows subject matter experts to contribute metadata, while enabling less sophisticated users to find relevant models.

The abstraction uses "simulation templates" to group models according to function, and then combine functionalities

to address hazard and threat scenarios.

The paper will describe the framework architecture, the innovative discovery and simulation template components,

and an initial reference implementation to be used in FEMA National Level Exercises (NLE 2010 and NLE 2011).

ABOUT THE AUTHORS

Todd Plantenga is a Principal Member of the technical staff at Sandia National Laboratories. He has a PhD in

EE/CS and over 15 years industry experience developing scientific computing models and algorithms. His research

interests include mathematical optimization, data mining, and distributed computing.

Ernest Friedman-Hill is a Principal Member of the technical staff at Sandia National Laboratories. He is the

creator of the Jess rules engine and author of Jess in Action from Manning Publications. His research interests

include machine intelligence, distributed computing, and simulation.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10226 Page 2 of 8

Integrated Modeling, Mapping, and Simulation (IMMS) Framework for

Planning Exercises

Todd Plantenga, Ernest Friedman-Hill

Sandia National Laboratories
1

PO Box 969, Livermore, CA 94550

tplante@sandia.gov, ejfried@sandia.gov

1
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United

States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

INTRODUCTION

Emergency management personnel at federal, state, and

local levels can benefit from the increased use of

simulation and modeling for emergency preparedness,

including planning, exercises and training. The

Department of Homeland Security Science and

Technology Directorate (DHS/S&T) has identified

dozens of potentially useful models across academia,

commercial industry, national laboratories, and

government. For example, the National Center for the

Study of Preparedness and Catastrophic Event

Response (PACER), a DHS Center of Excellence,

compiled a list of more than 110 simulation models of

relevance to catastrophic event planning and response

(Coolahan, 2007). DHS/S&T has brought together key

stakeholders such as the Federal Emergency

Management Agency (FEMA) and the Office of

Emergency Communications to develop requirements

for making models available and useful to the

emergency response community (DHSST, 2008).

Access to and economical use of modeling and

simulation tools were recognized as a significant

capability gap at national, state, and local levels.

DHS/S&T is addressing this gap by funding the

Integrated Modeling, Mapping, and Simulation

(IMMS) program. IMMS is architecting a framework

that will enable analysts, emergency planners, and

incident managers to more effectively prepare for,

analyze, and respond to real or potential catastrophic

events. The program vision is to create a capability for

linking together modeling and simulation tools for

easier use.

To realize this vision, a software architecture called

SUMMIT – the Standard Unified Modeling and

Mapping Integration Toolkit – is being iteratively

designed and prototyped. SUMMIT provides a

platform-neutral framework that brings together

distributed modeling codes and a wide range of users.

The framework makes it easier to find and integrate

models, provision them for a specific scenario, execute

models on available resources, and deliver results to a

collaborating set of users.

This paper briefly describes the architectural design of

SUMMIT, and then highlights two innovative features:

an abstraction that we call simulation templates which

organizes models according to planning needs, and a

discovery process that allows novice and experienced

users to find the most appropriate modeling tools.

Contributions of the Paper

Software integration frameworks for modeling and

simulation are not a new idea (Jain, 2006) (Pederson,

2006). McLean and Jain recognized the need for a

framework and proposed a classification scheme to

enable model integration for emergency response

training (McClean, 2007). The Dynamic Information

Architecture System (DIAS) provides an object

oriented software framework for integrating discrete

event simulation models (Simunich, 2005). The US

Army Corps of Engineers “Fort Future” project brings

together systems of models to validate proposed

infrastructure installations (Case, 2008). The Fast

Analysis Infrastructure Tool (FAIT) integrates a small

set of infrastructure models for rapid scenario analysis

(FAIT, 2010). Geospatial Information System (GIS)

visualization tools provide a loose sort of integration

for models that operate on geospatial data; for example,

the Department of Defense Palanterra (Beaulieu,

2004) and DHS iCAV (iCAV, 2010) tools. The

Department of Defense’s High-Level Architecture

(HLA) is a well-known contributor in this space (Kuhl,

1999). We note that SUMMIT is not intended as an

alternative to HLA; it operates at a higher level by

identifying appropriate resources and relying on

execution frameworks like HLA for code-level

integration.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10226 Page 3 of 8

The contribution of SUMMIT is a framework whose

prime goal is to bring together users and modeling tools

from traditionally separate communities. The

contribution of this paper is to discuss two innovations

that further this goal.

ARCHITECTURE OVERVIEW

The SUMMIT architecture is designed to allow for

maximum flexibility, placing few restrictions on

federated models but still providing necessary

capabilities for integration. Model owners decide who

has permission to use their code, and where the

executing code is hosted. Emergency planners and

other users link models as needed to address specific

emergency scenarios. As an example, suppose the

emergency incident is release of chlorine gas from a

railcar in an urban setting, and the emergency planner

wants to know if there are sufficient medical supplies

for first response. This scenario might incorporate a

finite element model that computes the chemical gas

dispersion plume given current weather conditions,

another model that quantifies casualties in the

population at risk, and a third model that tallies

available medical resources. SUMMIT makes it

possible for the planner to link these three models,

execute them, and view results, all from a single client

interface.

Software components are divided between a central

server, user clients, and executable models that are

usually hosted on the machines of model owners.

Figure 1 shows the main components of SUMMIT. The

“data” and “model” symbols in the figure are

components owned by model contributors. All other

symbols are part of the SUMMIT framework. A

SUMMIT Client component allows for interaction with

the user, and a SUMMIT Software Development Kit

(SDK) provides tools for model owners that ease the

process of model integration. Components in the

SUMMIT server provide system functionality through a

set of distributed core services.

Figure 1. SUMMIT Architecture

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10226 Page 4 of 8

SUMMIT provides for three types of users: model

owners, scenario planners, and emergency responders

who are the primary end user. Model owners use

SUMMIT SDK tools to create a software wrapper that

enables execution as part of a SUMMIT-mediated

federation of models. (Note that in this paper the term

“federation of models” does not refer to an HLA type

of federation, and the Federation Runtime Builder in

Figure 1 is not related to HLA Runtime Infrastructure.

A SUMMIT federation assumes each model executes in

isolation, given a correct set of inputs, and executes

only once during a scenario simulation. Future

versions of SUMMIT will relax this requirement,

allowing dynamic interaction between models,

including models that run in an HLA RTI.) For

example, the three models in the chlorine gas scenario

described earlier might be contributed by three

different model owners and hosted at three different

remote sites. Scenario planners use SUMMIT SDK

tools to create simulation templates that bring together

models for a specific incident scenario. In the chlorine

gas example a scenario planner created the simulation

template by linking three models at a conceptual level.

These two user groups work offline to add content into

the SUMMIT framework. The final end users access

content through a SUMMIT Client. They log into the

system, discover an appropriate simulation template,

configure inputs, and then view results after SUMMIT

automatically executes the models that compose the

simulation template.

Further details on the coordination and execution of

models in the SUMMIT framework are discussed in

(Friedman-Hill, 2010). This paper now turns its

attention to simulation templates and how they are

discovered by end users.

SIMULATION TEMPLATE ABSTRACTION

The simulation template concept is fundamental to the

SUMMIT architecture. Simulation templates provide

an abstract representation of a hazard or incident

defined by a scenario planner. A template also defines

the components and parameters needed to form an

executable simulation, which typically comprises

multiple models. Figure 2 shows a simulation template

whose purpose is to quantify medical risks to a

population subjected to an aerosolized chemical agent

release. The specific example of chlorine gas release

discussed earlier fits into this abstraction. The template

consists of 3 slots (rectangles), data flow connections

between slots (thin arrows), template-level inputs (thick

arrows pointing in), and template-level outputs (thick

arrows pointing out). The end user supplies template-

level inputs and views template-level outputs.

Figure 2. Example Simulation Template

Each slot in a template is an abstract functional

description filled by an actual model or simulation tool.

To be a candidate for a slot, a model must perform the

function, accept all inputs, and produce all outputs. For

example, in Figure 2 the Air Dispersion slot can accept

any model that produces a “plume” output (geospatial

contours of chemical agent at a fixed concentration) in

response to the four inputs: wind field, chemical agent

type, release location, and release amount.

The simulation template and slot abstractions promote

reuse of models. For instance, the Population Data

slot outputs a table of numbers describing inhabitants in

a particular urban region at a particular time. The same

slot can easily be used in simulation templates that

assess populations at risk from other hazards

(biological weapons, flood, etc.).

Slots are an abstraction for models to support the idea

of alternate models with similar functionality. The Air

Dispersion slot might be filled by one of several

candidate models (EPA, 2010 provides one list),

perhaps differentiated by their resolution, or special

features like wind tunnel effect in downtown cities.

Any model wrapped to fit the slot specifications is

capable of executing as part of the simulation template.

The end user decides on a specific model for each slot

after choosing a simulation template.

Software Integration of Models

Simulation templates greatly simplify the process of

provisioning and executing models from the viewpoint

of a scenario planner or end user. To achieve this, the

SUMMIT framework precisely defines interfaces for

each slot, and an execution scheme for each template.

Together, these enable automatic execution of a

simulation once inputs are provided by a user.

The execution scheme is generated automatically from

the connection topology of slots within a simulation

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10226 Page 5 of 8

template. SUMMIT currently assumes that any model

in a slot can be executed independently. SUMMIT

supplies inputs, invokes the model based on stored

instructions from the model owner, and collects outputs

of interest. The SUMMIT Federation Runtime Builder

determines an order of execution based on the layout of

slots in a template, and then directs a cascade of

executables, linking outputs to inputs until all models

have run. The independence of models implies they

can be run on remotely hosted machines; thus, model

owners can host their resource and SUMMIT acts more

as a broker that coordinates multiple models.

Inputs and outputs of a slot define a software interface

for candidate models. Combined with execution

instructions, these define an application programming

interface (API) for each slot. When a model is

wrapped to implement the API, it becomes a SUMMIT-

compliant model that can be invoked by the Federation

Runtime Builder. The API for a slot is generated by

SUMMIT SDK tools in the Java programming

language as a Java interface class. Java is chosen

because it is platform-neutral, supports a broad range of

communication services, and is extremely flexible for

wrapping codes (in any programming language). A

model is wrapped for a slot by implementing the

methods in the Java API. The model is declared

SUMMIT-compliant when it executes successfully

from a test template supplied by the SDK tool.

SUMMIT DataTypes

Input and output definitions in a software interface are

nontrivial. Figure 2 shows the end user view, which

has simple descriptions like “Location” and “Plume”,

but the Java API hidden from end users is much more

detailed. SUMMIT employs Google Protocol Buffers

(Google, 2010) to define data containers, and then

generates Java classes with Protocol Buffer tools. For

instance, “Location” is defined as container with

latitude and longitude, each a double precision number

containing decimal degrees, the first ranging between -

90 and +90, the second between -180 and +180.

DataType definitions are stored in a SUMMIT

metadata repository and can be reused freely in any

number of simulation templates. Each time a DataType

appears in a template, its visible display name can be

customized. For example, the “Location” DataType in

Figure 2 that designates the point of chemical release

might appear in a different template with the name

“Hospital Location”.

Metadata definitions for data containers have been

considered elsewhere, most notably the National

Information Exchange Model (NIEM), a

comprehensive effort led by the U.S. Department of

Homeland Security and U.S. Department of Justice

(NIEM, 2010). The XML schemas of NIEM provide a

good reference point for an initial set of DataTypes in

SUMMIT. For example, TwoDimensionalGeographic-

CoordinateType and ThreeDimensionalGeographic-

CoordinateType provide basic definitions for a

“Location” DataType. However, NIEM XML is not

used as the data content in SUMMIT because the

schemas are not designed for modeling and simulation

tools. Definitions sometimes have too much formal

abstraction, and many topics in emergency management

are not covered at all. Instead, SUMMIT uses the

NIEM schemas as guidance for specifying the content

of Google Protocol Buffers.

One of the goals of SUMMIT is to bring together

existing models from a variety of sources. It is unlikely

that models will follow a common set of DataTypes,

and inefficient to insist that models be rewritten to

accommodate a different API. Instead, SUMMIT

supports the idea of Adapters to make simple data

translations at the level of the wrapped model. For

example, if a model takes “Location” latitude in

degree-minute-second format instead of decimal

degree, then an Adapter inside the Java implementation

class makes the translation, while the slot API still uses

the “Location” DataType with decimal degree contents.

For more complex data format differences, SUMMIT

allows alternate DataTypes to appear on the link

between slots. For instance, “Plume” contour data can

be stored in SHP format or KML format (these are

alternate GIS formats that cannot always be

transformed into one another). SUMMIT might define

“Plume-SHP” and “Plume-KML” DataTypes instead of

the single “Plume”. The Air Dispersion slot could then

have a single output labeled “Plume-SHP | Plume-

KML”, meaning that either DataType is allowed. In

this case, a model is compatible with the slot if it uses

one or both output DataTypes. The process of

selecting models to populate a simulation template

becomes a little more complicated, because a

compatible DataType must exist between two

populated slots.

DISCOVERY PROCESS

The SUMMIT system will serve end users with

different goals (planning, training, operations), from

different perspectives (federal, regional, local), with

different levels of experience. A mature SUMMIT

system may broker hundreds of modeling and

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10226 Page 6 of 8

simulation tools with a broad range of capabilities. A

basic problem is to connect users with relevant models.

The previous sections described how emergency

response scenarios are captured in simulation

templates, and how models are abstracted by functional

capability into template slots. This simplifies the end

user process of discovery by dividing it into a sequence

of decisions: (1) find a simulation template that

matches the scenario of interest, (2) configure each slot

in the template with a compatible model, and (3)

provide specific inputs for execution of the template.

Step (1) is called discovery and is the subject of this

section.

SUMMIT will contain simulation templates that span a

broad range of hazards (chemical, biological, nuclear,

natural disaster, cyber incident, etc.) and outcomes of

interest (casualties, economic impact, infrastructure

damage, etc.). Users will have different interests and

areas of expertise, and all aspects of the framework

(templates and users) can be expected to evolve over

time. To address this situation, SUMMIT uses

“semantic ontology” technology to power a discovery

process that presents the user with a series of

“intelligent” queries. Semantic ontology has many

interpretations in the computer science community.

SUMMIT uses taxonomy trees captured with RDFS+

(Allemang, 2008).

A taxonomy tree defines a hierarchical organization of

objects in the shape of an inverted tree, with a general

“root” object at the top and more specific “branch” or

“leaf” nodes beneath. A simple example is a family

tree with a parent as the root and child branches. An

example in SUMMIT is the organization of hazards

into a tree; for instance, in Figure 3 a path is traced

from Hazard Incident (the root node) through

Chemical Incident, CDC Taxonomy, Chemical

Pulmonary Agent, and Chlorine (a leaf node).

Figure 3. Example Taxonomy Tree

The user traverses a taxonomy tree in the discovery

process to provide the right level of specificity. A tree

is always most general at its root, and more specific at a

leaf. For example, if the user is interested in any

Chemical Pulmonary Agent, then the search stops at

this level. Traversing further down a tree creates a

more specific request.

The discovery process uses the taxonomy tree level as

one of the search criteria for related simulation

templates. When a user chooses a certain node in a

tree, it indicates interest in templates matching the node

or its children, and indicates that “sibling” items should

be ruled out. In the example above, both Chlorine

(shown) and Phosgene (not shown) are at the level

below Chemical Pulmonary Agent. If the user chooses

Chemical Pulmonary Agent, then simulation templates

tagged for pulmonary agents, Chlorine, or Phosgene

are matched. However, if Chlorine is chosen then

simulation templates tagged for Chlorine are matched,

but templates specific to Phosgene are not.

The Discovery process uses a collection of taxonomy

trees organized into “phases”. The first phase is

Hazard Incident. The choice of hazards suggests other

relevant questions to ask under subsequent phases such

as the Hazard Actions phase. The suggestions are

logical links, shown with arrows in Figure 4. The user

is thus presented with a set of trees and chooses nodes

of interest from each one. The Discovery Engine in the

SUMMIT architecture (Figure 1) examines these

choices and decides whether to continue with additional

phases or to stop and return matching simulation

templates.

Figure 4. Linked Taxonomy Trees

All nodes chosen by the user contribute as search

criteria for finding a simulation template. The

SUMMIT discovery process also allows users to

exclude a node. For example, Figure 5 shows a user

choosing “Exclude” for the Commercially Transported

tree, which means any simulation template containing a

slot that models commercial transportation is ruled out.

The figure also shows the user stating “No preference”

for the tree Uses First Responders. This means the

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10226 Page 7 of 8

discovery process will not inquire further about first

responders or use this as part of the search criteria for

simulation templates.

Figure 5. Tree Preferences

The basic taxonomy tree idea is extended in SUMMIT

to allow alternate views of the same tree. For example,

Chemical Incident is a subtree that holds many specific

chemical hazards: Chlorine, Phosgene, etc. The

Center for Disease Control (CDC, 2010) provides a

taxonomy that organizes chemicals according to their

effects on the human body: Pulmonary Agent, Blister

Agent, etc. The Geospatial Data Model (GDM, 2010)

organizes the same chemicals by their physical

properties. The IMMS project consulted with a

chemical hazard subject matter expert who proposed an

organization based on the types of models required:

Dispersed By Air, Spread By Contact, etc. SUMMIT

allows all three trees to exist at the same time. The user

sees the three Chemical Incident groupings as shown in

Figure 6, chooses the one they understand best, and

follows that organizational tree in specifying the hazard

of interest. In this way the discovery process

accommodates multiple points of view.

Figure 6. Alternate Taxonomy Groupings

Summarizing, there are three main advantages with

using a taxonomy tree ontology: (1) users are presented

with a uniform interface, a series of taxonomy trees,

that is easier to grasp than an unstructured set of

questions, but still allows flexibility in the discovery

process; (2) subject areas are encapsulated, because

subject matter experts can define their knowledge in a

tree with minimal dependence on other parts of the

discovery knowledge base; (3) subject matter is

logically arranged from simple, general descriptions

down to detailed, specific leaf nodes.

Software Implementation

Taxonomy trees in SUMMIT are expressed as RDFS+

triples (Allemang, 2008). More powerful set restriction

concepts modeled in OWL are not needed. The full set

of trees is created and managed using the open source

Protégé tool (Protégé, 2010). A collection of triples

holds the SUMMIT ontology, but an inference engine

is required to reason from this knowledge in response

to user requests. SUMMIT uses Jess, an established

product in the rules engine community licensed by

Sandia National Laboratories (Friedman-Hill, 2003).

Jess provides inferencing capability and has a powerful

Java API that makes it easy to embed in Java

applications.

Jess inferencing rules examine user choices from

taxonomy trees and deduce the next set of relevant

taxonomy trees. This is based on logical links as in

Figure 4, and the location of those links with respect to

the selected tree node.

When discovery is completed, Jess implements logic to

return simulation templates that match user choices.

Every slot in a simulation template is tagged with

classes of the ontology. For example, the Air

Dispersion slot of Figure 2 is tagged with Disperses In

Air (there can be more than one tag per slot). If the

user chooses Disperses in Air during the Hazards

Action phase, then any simulation template containing

an Air Dispersion slot is considered a match and

“scores” one point. Each simulation template has a

total possible score equal to the number of distinct tags

on its constituent slots. Currently, the Discovery

Engine returns all simulation templates with at least one

match, ranked by the proportion of total possible

matches that were realized.

SUMMARY

In this paper we provided an overview of the SUMMIT

framework for integrating modeling and simulation

tools for emergency response. We focused on two

important features in SUMMIT: simulation templates,

an abstraction for organizing models in terms of their

relevance to emergency response scenarios, and the

discovery process, which provides a broad range of end

users with the capability to find relevant simulation

templates.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10226 Page 8 of 8

The SUMMIT reference implementation is currently

under development at Sandia National Laboratories as

part of the IMMS program. A preliminary version of

SUMMIT was deployed to support exercise planning in

the FEMA National Level Exercise 2010, conducted

May 17-18 in Washington, D.C. Threat, casualty,

infrastructure, and medical surge models were

integrated into SUMMIT to estimate health care

resource requirements for the exercise ground truth.

The models were contributed by different agencies,

linked with special DataTypes, and executed on

demand. SUMMIT has been designated as the

integrating architecture for modeling and simulation at

the FEMA National Level Exercise in 2011.

The SUMMIT framework and project information is

hosted at http://dhs-summit.com.

ACKNOWLEDGEMENTS

This work was funded by the Infrastructure and

Geophysical Division of the Department of Homeland

Security’s Science and Technology Directorate

(DHS/S&T/IGD) and managed by the National

Aeronautics and Space Administration (NASA).

REFERENCES

Allemang, D. & Hendler, J. (2008), Semantic Web for

the Working Ontologist, Elsevier.

Beaulieu, B.R. (2004). “Security through The

Palanterrs”, GeoIntelligence, Aug 2004.

Case, M.P. (2008). “Fort Future – Ongoing Research”,

US Army Corps of Engineers, Engineer Research

and Development Center. Retrieved May 2010 from

http://www.erdc.usace.army.mil/pls/erdcpub/docs/erd

c/images/ERDCFactSheet_Research_FortFuture.pdf.

CDC: Centers for Disease Control and Prevention,

Chemical Emergencies (2010). Retrieved May 2010

from http://www.bt.cdc.gov/chemical.

Coolahan, K.E. (2007). “Planning for an Integrated

M&S Framework for Catastrophic Event Response”,

in Proceedings 2007 Spring Simulation

Interoperability Workshop, Norfolk, VA, Apr 2007.

Also see http://pacer-ms-catalog.jhuapl.edu.

DHSST (2008). “High-Priority Technology Needs”,

Department of Homeland Security Science and

Technology Directorate, Version 2.0, June 2008.

FAIT: Fast Analysis Infrastructure Tool (2010).

Retrieved May 2010 from

http://sandia.gov/nisac/fait.html.

GDM: Geospatial Data Model Version 2.7 (2010).

Retrieved May 2010 from http://www.fgdc.gov.

EPA Support Center for Regulatory Atmospheric

Modeling (2010). Retrieved May 2010 from

http://www.epa.gov/scram001/dispersionindex.htm.

Friedman-Hill, E., (2003), Jess in Action, Greenwich,

Manning Publications.

Friedman-Hill, E. Plantenga, T., & Ammerlahn, H.

(2010). “Simulation Templates in the SUMMIT

System”, in 2010 SISO Spring Interoperability

Workshop, Orlando, FL, Apr 2010.

Google Protocol Buffers (2010). Retrieved May 2010

from http://code.google.com/apis/protocolbuffers.

iCAV: Integrated Common Analytical Viewer (2010).

Retrieved May 2010 from https://icav.dhs.gov.

Jain, S. & McLean, C.R. (2006). “An Integrating

Framework for Modeling and Simulation for Incident

Management”, Journal of Homeland Security and

Emergency Management, Vol 3, 2006.

Kuhl, F., Weatherly, R., & Dahman, J. (1999).

Creating Computer Simulation Systems: An

Introduction to the High Level Architecture, Upper

Saddle River: Prentice-Hall.

McClean, C.R., Jain, S., Lee, Y.T., & Shao, G. (2007).

“An Integrated Simulation Environment For Incident

Management Training”, National Institute of

Standards and Technology, Gaithersburg, MD.

NIEM: National Information Exchange Model (2010).

Retrieved May 2010 from http://www.niem.gov.

Pederson, P., Dudenhoeffer, D., Hartley, S., & Permann,

M. (2006). “Critical Infrastructure Interdependency

Modeling: A Survey of U.S. and International

Research”, INL/EXT-06-11464, Idaho National

Laboratory, Idaho Falls, ID, Aug 2006.

Protégé: Stanford Center for Biomedical Informatics

Research (2010). Retrieved May 2010 from

http://protege.stanford.edu.

Simunich, K.L. (2005). “Dynamic Information

Architecture System (DIAS): Developer’s Guide”,

Argonne National Laboratory, ANL/DIS-0501,

February 2005.

